Mission Planning for Employing Internet Protocol (IP) on the Local **Ionospheric Measurements Satellite (LionSat)**

Brendan Surrusco, Robert D. Siegel, Phillip M. Sorber, Derek V. Morr, Nathan F. O'Connor, Charles L. Croskey, and Sven G. Bilén Communications and Space Sciences Laboratory Penn State University

> Jason A. Soloff Advanced Technology Development Group NASA Goddard Space Flight Center

LionSat

LionSat Overview

Local <u>Ion</u>ospheric Measurements <u>Sat</u>ellite

 Funded by Nanosat program sponsored by AFOSR/NASA/AIAA

- Explore ram/wake structure via probes as spacecraft "rolls" along orbit
- Obtain ambient measurements of undisturbed ionospheric plasma environment via two probes mounted on deployed booms
- Correlate ambient to ram/wake measurements
- Engineering goal
 - Investigate initial spin-up and spin maintenance using pair of RF ion microthrusters
- Educational goals
 - Prepare students at undergraduate and graduate levels for productive careers in technical and nontechnical fields relating to space systems

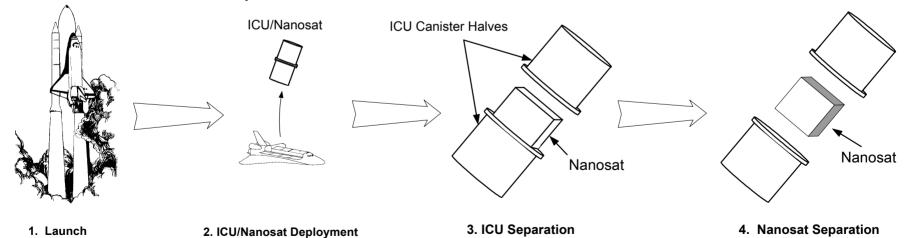
LionSat

2003 SIW: Mission Planning for Employing IP

Communications on LionSat

University Nanosat-3 Program

- NS-3 Objectives
 - Future workforce training through national student satellite design and fabrication competition
 - Development of small satellite technology area, including subsystems development and standard deployment systems with rapid launch capability at low cost
- NS-3 Description
 - Satellite design and fabrication competition to be sponsored by AIAA (recurring 2-yr cycle)
 - Winner of competition is launched from Space Shuttle (baseline)
 - AFRL/VS–STP will develop second generation small satellite launch adapter that provides significant safety-related protections
 - AFRL/VS–NASA GSFC will develop suite of standard nanosat components (bus, power, comm, etc.)
 - NASA GSFC will provide design and safety related guidance to participating universities
 - AFOSR to provide nominal funding to US universities to participate in competition


NS-3 User's Guide Deployment Concept

- Baseline is Shuttle launch using STP Canister for all Payload Ejections (CAPE) deployment system
- Nanosat will be mounted inside AFRL Internal Cargo Unit (ICU)
- ICU/Nanosat is installed inside CAPE canister.
- ICU/Nanosat is ejected from CAPE on orbit

from Orbiter

ICU halves separate and Nanosat is released

- AO released in November 2002 three week response
- Award notification received just before Christmas 2002
 - 13–14 awards were made
- Converted class participation at start of the spring semester
- System Concept Review April 2003
- Preliminary Design Review August 2003
- Critical Design Review August 2004
- Flight Competition Review in January 2005
- Launch around March 2006

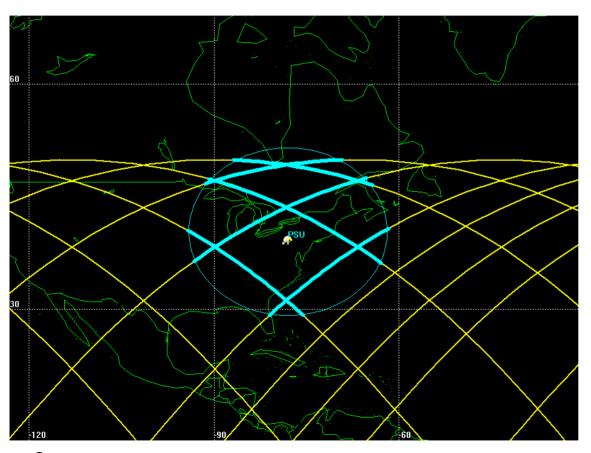
- Roll rate of ~10 rpm
 - → 14,400 rolls/day
- 12 samples per roll
 - × 4 sensor heads
 - → 691,200 samples/day

Mode	Bytes/sample
Swept Plasma Freq P	1024
Swept Bias LP	512
Tracking Plasma Freq	6
Fast Temperature P	4
Fixed Bias LP	2

Functional Objective	Swept Plas. FP	Swept Bias LP	Tracking Plas. FP	Fast Temp. P	Fixed Bias LP	Portion of day	MB/day
1	5%	10%	40%	10%	40%	15%	11.0
2	100	0	0	0	0	1.5	10.6
3	0	20	40	10	40	15	11.0
4	0	2.5	0	0	97.5	100	10.2

PENNSTATE

- Science: Functional Objective dependent
 - = 11.0 MB/day
- Magnetometer: (for science and attitude)
 - 6 B/sample 172,800 samples/day = 1.04 MB/day
- GPS: (for orbit determination and time)
 - 20 B/sample 0.1 samples/second = 0.17 MB/day
- Housekeeping:
 - 6 temp, 40 voltage, 10 current, 2 tank pressure, and 3 horiz. sens.
 - 2 B/sample/ch. 61 ch's 0.1 samples/second = 1.05 MB/day
- Total: 13.3 MB/day to download



LionSat Orbital Parameters

- Launched into LEO orbit from Shuttle
- 51° inclination
- ~400 km altitude
- ~6 mo → 1 yr
 lifetime

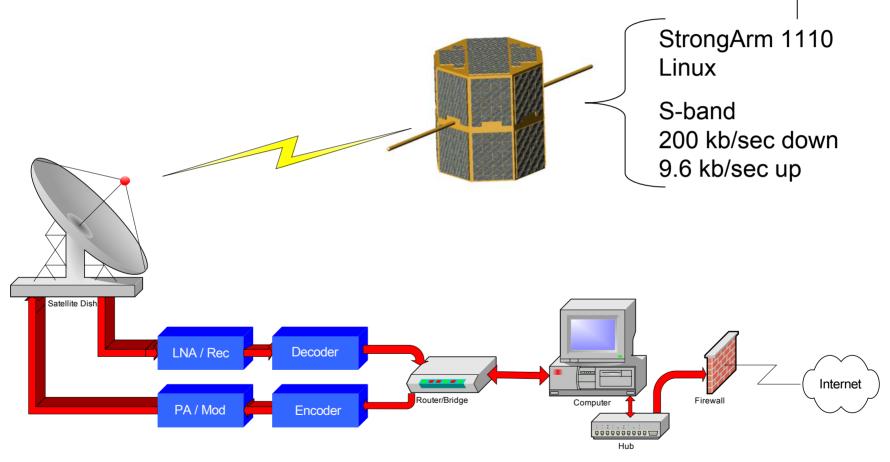
PENNSTATE

- ~Six sequential overpasses/day
- Reacquisition needed for each pass
- Maximum path length 1470 1840 km→ maximum $t_{\text{delay}} \sim 4.9 - 6.1 \text{ ms}$
- Data generated on satellite, asymmetric link
- LionSat initializes handshake based on GPS and ephemeris data
 - If no response, LionSat broadcasts in the blind

Minimum elevation angle and overhead dependent

	10 deg min	elevation	5 deg min elevation	
	directly	not	directly	not
	centered	centered	centered	centered
Total bytes per day to receive	13253760	13253760	13253760	13253760
Avail. download time (sec/day)	1667	1882	2750	2921
= raw data rate (Bytes/sec)	7951	7042	4820	4537
= raw data rate (bits/sec)	63605	56339	38556	36299
Divide by IP in Space efficiency	0.85	0.85	0.85	0.85
= processed data rate (bits/sec)	74830	66281	45360	42705
* 1.2 for design margin (bits/sec)	89796	79537	54433	51246
rate 1/2 convolution encoding	179592	159075	108865	102492

Baseline design: 200 kb/sec



LionSat Communications Component View

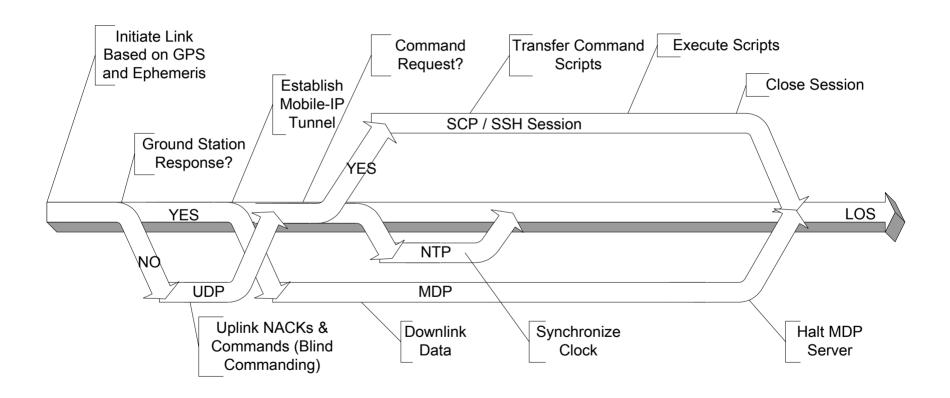
LionSat

- Allows for easier integration of multiple ground stations
 - NS-3 participants may share ground stations
 - AFRL/NASA may provide access
- COTS hardware/software for low-budget program
- Student experience will be in standard protocols not specialized, narrow discipline
 - More relevance to students' professional development
 - More likely to find students with expertise

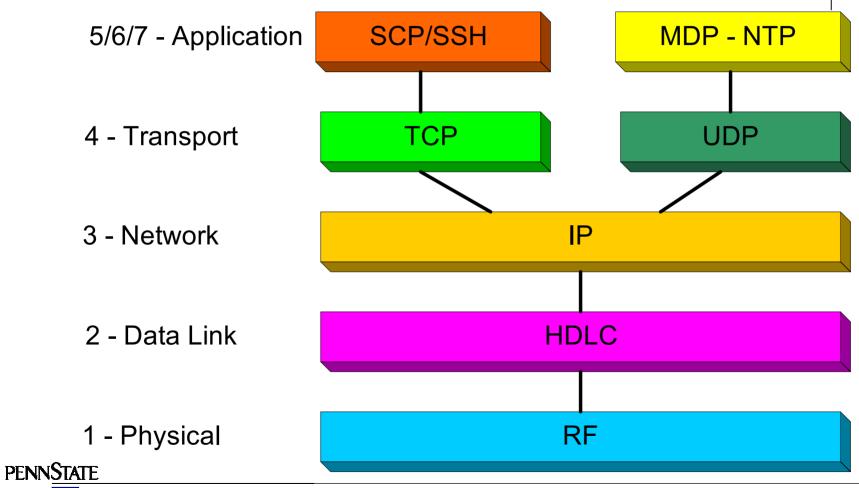
CPU Development Kit Capabilities

- Intel SA1110, 32MB SDRAM/16MB flash
- Serial/ethernet links
- Linux based on 2.4 kernel
- In-system programmable
- Embedded TCP/IP stack
- FTP server
- Web server
- Kernel/root file system packages + compiler
- Teraterm Pro + Netspy included
- Massive documentation + code examples
- Development on Linux/Windows PC

SSV DNP/1110 High-speed DIL/NetPC



LionSat Communications Timeline View



LionSat Communications Layer View

LionSat

- UDP is efficient in the blind
 - No connection setup overhead
 - No ACK overhead
 - Less protocol overhead
- UDP provides one way transport
 - MDP reliable file transfer protocol
 - RTP real-time system status display

- Host-based security
 - Only run SSH on satellite
 - RSA-based login
 - Keys stored offline on ground station
- Require IPSec to talk to satellite
 - Authentication headers
 - Ensures only ground station can talk to LionSat

LionSat & The OMNI Project

- OMNI has developed and successfully flown full IP over HDLC missions – UoSat-12, CHIPSat, STS-107/CANDOS
- OMNI has demonstrated IP through NASA's TDRSS
- OMNI has extensive experience implementing effective, lowcost IP communication architectures for space applications
- OMNI has existing code & applications to support future missions with limited adaptation/porting required
- OMNI will provide advice and "mentoring" to Penn State University students in developing and implementing the LionSat mission model and flight software

- LionSat will use IP communications for return of prime science data and uploading new campaign scenarios
- After basic mission criteria have been met, LionSat can be used as a test-bed for testing/verifying relative performance of various protocols

- LionSat part of Nanosat-3 program and will provide ionospheric measurements and test new microthruster
- LionSat is excellent educational experience for students
- Partnership with GSFC/OMNI for mentoring student satellite team
- LionSat will use IP communications to download data and upload new campaigns
- LionSat will demonstrate the future of satellite communication protocols

